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Abstract

Quantification of tropical forest Above Ground Biomass (AGB) over large areas as input
for Reduced Emissions from Deforestation and forest Degradation (REDD+) projects
and climate change models is challenging. This is the first study which attempts to
estimate AGB and its variability across large areas of tropical lowland forests in Cen-
tral Kalimantan (Indonesia) through correlating airborne Light Detection and Ranging
(LIiDAR) to forest inventory data. Two LiDAR height metrics were analysed and re-
gression models could be improved through the use of LIiDAR point densities as input
(/?2 =0.88; n=52). Surveying with a LiDAR point density per square meter of 2—4 re-
sulted in the best cost-benefit ratio. We estimated AGB for 600 km of LiDAR tracks and
showed that there exists a considerable variability of up to 140 % within the same for-
est type due to varying environmental conditions. Impact from logging operations and
the associated AGB losses dating back more than 10yr could be assessed by LiDAR
but not by multispectral satellite imagery. Comparison with a Landsat classification for
a 1 million ha study area where AGB values were based on site specific field inventory
data, regional literature estimates, and default values by the Intergovernmental Panel
on Climate Change (IPCC) showed an overestimation of 46 %, 102 %, and 137 %, re-
spectively. The results show that AGB overestimation may lead to wrong GHG emis-
sion estimates due to deforestation in climate models. For REDD+ projects this leads
to inaccurate carbon stock estimates and consequently to significantly wrong REDD +
based compensation payments.

1 Introduction

In 2008 worldwide deforestation and forest degradation emissions are estimated to
account for about 6—-17 % of the total anthropogenic carbon dioxide (CO,) emissions
(Van der Werf et al., 2009). In the period of 1990 to 2005 annually about 13 million ha
of tropical forest were deforested and with 0.98 % South and Southeast Asia had one
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of the highest annual deforestation rates between 2000 and 2005 (FAO, 2006). Hu-
man economic activities such as the establishment of industrial timber estates and
large-scale oil palm plantations, legal and illegal logging, and shifting cultivation are
the main drivers for deforestation and forest degradation in this region (Hansen et al.,
2009; Langner et al., 2007; Langner and Siegert, 2009; Rieley and Page, 2005; Siegert
et al., 2001). One important measure of the United Nations Framework Convention
on Climate Change (UNFCCC) to curb Green House Gas (GHG) emissions from this
sector is the Reduced Emissions from Deforestation and forest Degradation (REDD+)
programme. Implementation of REDD+ projects depend on accurate estimates of GHG
emissions avoided, because inaccurate estimates can lead to carbon credits that are
not covered by the specific REDD+ project. Typically in tropical forests the main car-
bon pool is the Above Ground Biomass (AGB) (Gibbs et al., 2007; FAO, 1997; Chave
et al., 2005). To estimate CO, emissions from deforestation and forest degradation the
change in AGB corresponding to information on both the area of forest loss and/or
the level of degradation is needed, which remains a considerable challenge in tropical
forests. Especially AGB loss and the associated CO, emissions from forest degra-
dation by logging and fire are difficult to assess and monitor because their impacts
may vary significantly. Detection of degradation is also important as it is predicted that
degraded and regrowing forests will include increasingly large areas of the tropical re-
gions (Gibbs et al., 2007). The most accurate method of AGB estimation is based on
forest inventories where field measurements are extrapolated to AGB values through
allometric equations (FAO, 1997; Chave et al., 2005). Although this approach provides
precise AGB estimations the biotic and structural complexity of tropical ecosystems
make forest inventories difficult, time-consuming, and expensive: generic relationships
may not fit to specific areas, growth conditions may vary greatly within a specific for-
est ecosystem, and to produce regionally and globally consistent results is challenging
(Gibbs et al., 2007; Chave et al., 2005). Further there is considerable uncertainty about
the spatial variability of AGB in different tropical forest types and the impact of logging
and fire on AGB stock. AGB can also be estimated by remote sensing technologies,
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but no such instrument can measure AGB directly, therefore in situ data collection is
always inevitably (Drake et al., 2003; Rosenqvist et al., 2003). The size of the area
and the quality of the remote sensing data has major influence on the accuracy of the
output. For global AGB and carbon stock estimation moderate to coarse resolution re-
mote sensing data (e.g. MODIS) is typically used and at a national or regional scale
medium resolution multispectral imagery or SAR data (Baccini et al., 2012; Englhart
et al., 2011; Ryan et al., 2012; Saatchi et al., 2011).

Tropical forest ecosystems are one of the largest sinks of carbon, of which tropical
peat forests are the highest. It is estimated that the area of tropical peatland is in the
range of 30-45 millionha (approximately 10-12 % of the global peatlands) of which
16.8—-27.0 million ha are located in Indonesia (Page et al., 2010). With 88.6Gt tropi-
cal peatlands are one of the largest near-surface pools of terrestrial organic carbon
(IPCC, 2007; Page and Rieley, 1998; Page et al., 2010; Sorensen, 1993). In Indonesia
peat accumulates over thousands of years and typically develops convex formed peat
domes up to 20 m thick covered by peat swamp forest (Anderson, 1983; Page et al.,
2004; Rieley et al., 1996; Rieley and Page, 2005). Due to high deforestation rates and
emissions from peat by recurrent fires and bacterial peat decomposition, which is es-
pecially observed in the costal lowland areas of Sumatra and Kalimantan, Indonesia is
among the largest CO, emitters worldwide (Ballhorn et al., 2009; Hooijer at al., 2010;
Page et al., 2002).

The main goal of this study was to estimate AGB and to investigate its spatial vari-
ability due to natural growth conditions and human impacts along transects of sev-
eral hundred km in lowland forest ecosystems in the Indonesian province of Cen-
tral Kalimantan using small-footprint LIDAR remote sensing data. Central Kalimantan
comprises a landscape of extensive lowlands with waterlogged peat swamp and low-
land dipterocarp forests growing on dry mineral soils. Large-scale logging and peat-
land drainage resulted in recurrent severe wildfire episodes that destroyed large tracts
of these ecosystems and led to huge CO, emissions in the past (Ballhorn et al.,
2009; Rieley and Page, 2005). Airborne LiDAR is a powerful technique for biomass
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quantification and monitoring because it provides 3-D information on the forest struc-
ture and has been successfully used to derive forest AGB at different scales from sin-
gle trees (Popescu, 2007; Zhao et al., 2009) to large contiguous forest stands (Asner
et al., 2009a; Asner et al., 2010; Lefsky et al., 2002, 2005; Means et al., 1999). Asner
et al. (2010) were successful in correlating small-footprint airborne LiDAR to AGB in
a tropical lowland forest in Peru. The approach presented in our study on deriving AGB
values from airborne LiDAR data follows guidelines proposed by Asner et al. (2010).
However there have been no studies so far which investigated the AGB and its variabil-
ity across large transects in tropical dipterocarp forests.

Especially for the tropical peat swamp forests of Indonesia there is an urgent need to
fill knowledge gaps considering AGB values due to different reasons: (i) it is necessary
to verify whether the approach on deriving AGB estimates from airborne LiDAR data
is applicable to specific forest ecosystems in Indonesia; (ii) as Indonesia is one of the
world’s biggest emitters of carbon (Ballhorn et al., 2009; Hooijer et al., 2010; Page et al.,
2002) it has high potential to negatively influence the global climate if its peatlands are
further drained and burned at current rates; (iii) few field measurements considering
AGB are available to date as most peatlands in Indonesia are highly inaccessible;
(iv) the growing demand for palm oil, due to the biofuel boom, is a serious threat to
these ecosystems, since peatlands are one of the only undeveloped and uninhabited
near coastal areas in Indonesia; (v) the number of REDD initiatives on peat forests
in Indonesia is high (more than 40) and the only certified REDD project under the
Voluntary Carbon Standard (VCS) to date in Indonesia is located on a peat swamp
forest; (vi) REDD projects require a basic methodology on how to most accurately
estimate AGB; and (vii) global climate models will need more reliable data on AGB.

11819

BGD
9, 1181511842, 2012

Detection of AGB
variability with LiDAR

J. Jubanski et al.

Title Page
Abstract Introduction

Conclusions References

Tables Figures
1< >l
4 >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/9/11815/2012/bgd-9-11815-2012-print.pdf
http://www.biogeosciences-discuss.net/9/11815/2012/bgd-9-11815-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

2 Materials and methods
2.1 Acquisition and processing of airborne LiDAR data

From 5th to 10th August 2007 airborne LiDAR data was acquired in a flight cam-
paign by Kalteng Consultants and Milan Geoservice GmbH (Fig. 1). Small-footprint
full-waveform LiDAR data with a size of 33 178 ha (length of approximately 600 km) was
recorded with a Riegl LMS-Q560 Airborne Laser Scanner from a flight altitude of ap-
proximately 500 m above ground and a scan angle of 30° (swath width approx. 500 m).
The instrument had a pulse rate of up to 100000 pulses per second, a footprint of
0.25m, and a wavelength of 1.5 um (near Infrared). This survey configuration resulted
in @ nominal point density of 1.4 ptm‘z. Under laboratory conditions this system allows
height measurements of up to £0.02m. The acquired data set has an absolute verti-
cal accuracy of £0.15m and horizontal accuracy of £0.50 m Root Mean Square Error
(RMSE). Next step was the filtering of the LiDAR point clouds. This is a crucial step,
since the DTM is directly derived from the filtered point clouds. In this study, the filtering
was the separation between ground and off-ground LiDAR points, since within the study
area all off-ground points consist of vegetation. The applied filtering approach was the
hierarchic robust filtering, and the method used to generate the DTMs (1 m resolution)
the linear adaptable prediction interpolation (kriging). Both solutions are implemented
within the Inpho software package.

Forest inventory data was collected at three sites representative of lowland forest
ecosystems from May to August 2008 (Fig. 1). The first site was located in the Se-
bangau peat swamp forest catchment, with 16 field inventory plots covering tall and
low pole peat swamp forests. The second site was situated within Block C of the for-
mer Mega Rice Project (MRP), with 20 field inventory plots covering diverse degrada-
tion stages of peat swamp forest. The third study site was located in Tumbang Danau
and Tewaibaru, with 16 field plots covering logged and unlogged lowland dipterocarp
forests. The location of the nested plots was chosen depending on forest type and set
in beforehand to guarantee that they lie within the LiDAR point clouds. Four nested
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plots of one cluster build the corners of a 50 x 50 m? square. Trees with a Diameter at
Brest Height (DBH) smaller than 7 cm were excluded. The nested plot method is based
on three circular plots with different sizes (Pearson et al., 2005). In each of the three
circular plots, trees with a certain DBH range were recorded: 7 to 20 cm (4 m radius), 20
to 50 cm (14 m radius), and greater than 50 cm (20 m radius). The sum of the measured
parameters of the two smaller nests was multiplied by an expansion factor in order to
get the values for the 20 m radius inventory plot (0.13 ha). Local species name and DBH
were recorded. Local tree names were translated to the corresponding Latin names
through using local expert knowledge, tropical tree databases provided by the World
Agroforestry Centre (http://www.worldagroforestrycentre.org/Sea/Products/AFDbases/
WD/Index.htm) and Chudnoff (1984), and data from a local herbarium at the Cen-
tre for International Co-operation in Management of Tropical Peatland (CIMTROP) in
Palangka Raya. Also the species specific wood densities were derived from the above
described databases and from IPCC (IPCC, 2006). Some local names, especially of
various dipterocarp species, could not be translated, do that an average specific wood
density of 0.57tm™2 was applied (FAO, 1997). Finally, the AGB values were calculated
using an allometric equation for moist tropical forests from Chave et al. (2005) exclud-
ing tree height.

2.2 Generation of the regression models

The first step for the generation of the regression models was the creation of a height
histogram for every field plot. In order to achieve this, all points within each plot area
were normalized to the ground using the DTM as reference. After that, given a pre-
defined height interval (or bin size), the number of points within the given intervals
was stored in the form of a histogram. In order to correlate the AGB field observations
with the LiDAR metrics, two parameters derived from the height histograms were used.
The first, developed for this work, is based on Centroid Height (CH) of the histogram.
The second one correlates the AGB with the Quadratic Mean Canopy profile Height
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(QMCH) (Asner et al., 2010). The first bin of each plot was considered ground return
and therefore eliminated from the further processing.

One important parameter in LiDAR surveying is the point density. The acquisition
of high point densities is expensive, because it requires the most recent equipment
and a slow and low flying aircraft. The real point density can strongly vary across the
surveyed area mainly due to stripe overlapping, flight velocity, height variation, target
reflectance, and return quality degradation caused by smoke or water vapour in the at-
mosphere. In order to account for these factors within the regression models, the point
density was used for each plot as a weighting factor. Since the point density directly
affects the quality of the height histogram, this also directly affects the metrics derived
from it (i.e. the CH and QMCH). Usually, the regression models applied for AGB esti-
mations use the AGB as a dependent variable and the LiDAR metrics as independent.
In this study, this order was changed because the least-squares solution chosen per-
mitted only weighting the dependent variables, which are treated as observations with
known weights — the point densities. For both studied metrics (CH and QMCH) the
regression models were derived using the classic approach and the weighted adjust-
ment. After the regression processing, the obtained parameters were transformed in
order to obtain an equation that directly determines the AGB based on the LiDAR met-
rics. In order to verify the influence of point density on the AGB estimation accuracy,
a rigorous covariance propagation analysis was performed (see Sect. 2.3).

The biomass estimation models were applied to 600 km (33 178 ha) of LiDAR tracks
covering pristine and degraded forest types in Central Kalimantan. The chosen regres-
sion model was the CH due to its higher correlation coefficient and lower RMSE. In
order to avoid artefacts caused by filtering problems, 20 m of the LiDAR track borders
were excluded from the processing.
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2.3 Rigorous covariance propagation analysis

The basic regression model used in this work correlates the AGB with the LiDAR Met-
rics (LM) through a power function:

AGB = a-LM? (1)

Although, in order to permit LIDAR metrics weighting, it is necessary to rewrite Eq. (1)
with LM as dependent variable:

LM = k - AGB" )

In this form, the LiDAR metrics can be treated as observations and weighted with the
correspondent LiDAR point density within a non-linear least-squares solution. After the
regression processing, the residuals of the observations can be determined as well
as the covariance matrix of the parameters k and w (Z,,). Now it is necessary to
transform the parameters k and w (Eqg. 2) into a and b (Eq. 1), which actually correlate
the LiDAR metrics with the AGB:

a=(1/k)""" 3)
b=1/w (4)

In order to perform a rigorous AGB accuracy estimation, it is necessary to determine
the covariance matrix of the parameters a and b (Z,,) though a covariance propaga-
tion:

3.,=G-3, -G (5)
Where:

G [63/0/{ 6a/6w] ~ [_1/kWT+1.W In(k)/k¥ - w?
= |ob/ok objow| = 0 1w
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Returning to Eq. (1), one can write a new covariance propagation equation:

ZpcB = Oagg =D Ziman- D’ (7)
Considering all terms on the right side of the Eq. (1) as parameters, one comes to:
D= [a-b-LMb'1 Lm? a-LMb-In(LM)] 8)
Take X 55 as the extended covariance matrix:

oy 0 0
Zman=| 0 o2 oy 9)
0 Oap O-g

Solving Eq. (7) with Egs. (8) and (9) and denoting the point density o, one comes to
the final AGB standard deviation (oagg) estimation model:

Oacs = \/A/ Vo +B+C (10)

With:
A=<a-b-LMb‘1>2 (11)
B =LM". (LMb-a§ + 0, (a-LMb : In(LM))) (12)
C= (a-LMb : In(LM)) : (aab LM? + 62 (a-LMb : In(LM))) (13)

Equations (10) to (13) were applied to the CH and QMCH models derived in this work.
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2.4 Comparison between optical remote sensing and LiDAR for AGB estimation

Prior to the image classification, the Landsat imagery (ETM+ 118-62, 5 August 2007)
was atmospherically corrected using ATCOR (Richter, 1997). The land cover classifica-
tion for the 1 million ha study area was implemented using an object-based image anal-
ysis approach (software eCognition, Trimble GeoSpatial, Munich, Germany). In a first
step, this approach generates image objects from spatially adjacent pixels with similar
spectral values, which are then classified by a user defined rule-set. In order to differ-
entiate primary and secondary forests, a pixel-based spectral mixture analysis (SMA)
was applied to the data. SMA have a high potential to derive forest degradation from
remote sensing data (Asner et al., 2009b; Matricardi et al., 2010; Souza at al., 2005).
A linear SMA assumes that each pixel spectrum is a linear combination of a finite num-
ber of endmembers (Adams et al., 1986). The results of a SMA, i.e. scaled sub-pixel
fractions representing photosynthetically active vegetation, non-photosynthetic vegeta-
tion (NPV), soil and shade, were used to derive disturbed forest areas. The final land
cover classification had an overall accuracy of 89 % with a Kappa coefficient of 0.88.

Next the LIDAR AGB estimates for 28 284 ha of the LiDAR tracks, covering only peat-
land, were quantitatively compared with the Landsat classification. The AGB values
of the land cover types were derived from site specific field inventory data (n=53),
regional literature estimates (literature values for the Indo-Malayan archipelago), and
IPCC default values (IPCC, 2006) and assigned to the land cover types classified in
the satellite imagery, which is a method often used (Gibbs et al., 2007). Site specific
field inventory data represent Tier 2/3, regional literature estimates Tier 2, and IPCC
default values Tier 1 of the IPCC Guidelines for National Greenhouse Gas Inventories
(IPCC, 2006). Higher Tiers represent higher levels of precision and accuracy in AGB
estimation (IPCC, 2006). Finally the average LiDAR AGB estimates within the LiDAR
tracks for the land cover classes on peatlands were extrapolated to the 1 million ha
study area and compared to the AGB results based on the site specific field inventory
data, regional literature estimates, and IPCC default values.
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For the class burned it has to be noted that the Landsat classification also includes
burned areas where regrowth already took place for more than 3 yr. On the other hand
the field plots (but also the regional literature estimates and the IPCC default values)
where collected in fires scars not older than 3yr. This explains the difference in AGB
between the LIDAR estimates and the estimates based on the site specific field inven-
tory data, regional literature estimates, and IPCC default values (Tables 1 and 2). As
both, area and AGB, of this class are small this does not have big impact on the overall
results (Tables 1 and 2).

3 Results

The LiDAR point clouds were analysed using both techniques presented in Sect. 2.3
(CH and QMCH). These parameters were correlated to field estimated AGB values
(0.13ha) in order to establish robust biomass estimation models. The biomass estima-
tion models were applied to 600 km (33 178 ha) of LiDAR tracks covering pristine and
degraded forest types in Central Kalimantan

Four main forest types — tall peat swamp forest, low pole peat swamp forest, de-
graded forest (logged or burned) and lowland dipterocarp forest — were investigated.
Figure 2 shows four typical field plots, their LIDAR height profiles with vegetation
heights, and the derived LiDAR height histograms, which illustrate the structural dif-
ferences between the different forest types and the impact of degradation.

Figure 3a shows the results for the regression using the CH as input. A high cor-
relation coefficient (R = 0.88; RMSE = +13.79t 0.13ha™'; PPR=+14.98t 0.13ha™")
was obtained when the LiDAR point densities per square meter (ptm‘z) were treated
as weight during the regression. The derived coefficient of determination is comparable
with those reported in other studies of tropical forests (Asner et al., 2009a, 2010; Drake
et al., 2002). Also for the QMCH a high correlation was obtained (F?2 =0.84) when ap-
plying the LiDAR point density as weight (Fig. 3b). In both cases, the use of the LiDAR
point densities as weight improved the regression models.
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The costs of LiDAR surveying depend on the point density. To assess the influence
of the LiDAR point density on the quality of the AGB estimation, a rigorous covariance
propagation analysis was performed (see Sect. 2.2). The results (Fig. 3c) suggest that
LiDAR surveying with more than 4ptm'2 does not significantly improve the AGB re-
gression models. On the other hand surveying with less than 1 ptm‘2 may lead to sig-
nificant inaccuracies, so that we conclude that surveying with a point density between
2and 4 ptm‘2 may show the best cost-benefit ratio.

To validate the proposed AGB estimation, we determined the Predictive Power of the
Regression (PPR) as proposed by Asner et al. (2010). 5000 iterations were performed
randomly leaving 10 % of the plots out of the regression as control. The Root Mean
Square Error (RMSE) after this iterative process was about 11/0.13 ha higher than the
RMSE determined using all plots in the regression. These results are similar to the
ones presented by Asner et al. (2010).

Next the spatial variability of AGB along the 600 km LiDAR tracks was analyzed.
Through applying the CH based regression model it was possible to illustrate AGB
variability linked to local soil properties and water logged conditions and the impact of
previous logging operation and fire with high spatial resolution. Figure 4 shows a 10 km
long (408 ha) LiDAR transect covering pristine and logged peat swamp forest (location
of this transect is shown in Fig. 4). Figure 4a shows a Landsat scene acquired in the
year 2000 where forests appear in green and logging impact in pink colors. Historical
Landsat imagery suggests that logging occurred here in the year 1997. After 1998 all
logging operation has been terminated. In the 2007 Landsat image this previous log-
ging activity is no longer visible (Fig. 4b) but still detectable in the LIiDAR AGB profile
shown in Fig. 4d (black, black arrows). There is an AGB variation of up to 150 % in
logged and pristine peat swamp forest (20—50t0.13ha‘1) (Fig. 4d). The AGB is ap-
proximately 35 % lower than in adjacent areas with little or no logging impact although
there has been 10yr of forest regrowth. LIDAR AGB spatial profils clearly show the
ability of airborne LiDAR to assess AGB variability with high spatial resolution and also
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detect former logging activity which is no longer visible in recent multispectral satellite
imagery (Fig. 4a, b, and d).

A standard method to estimate AGB is to assign AGB values to a land cover classi-
fication based on multispectral satellite imagery (indirect method) (Gibbs et al., 2007).
In the case of the LiDAR track shown in Fig. 4, the Landsat based classification only
allows for the discrimination between two land cover classes, i.e. peat swamp forest
pristine and logged. In Fig. 4c the LIDAR AGB estimates are superimposed on the
Landsat based land cover classification. Figure 4d shows a comparison between AGB
estimates from LiDAR (black), site specific field inventory data (orange), regional liter-
ature estimates (yellow), and IPCC default values (red). From Fig. 4c, d it is clear that
the spectral reflectance in Landsat imagery does not represent the spatial AGB hetero-
geneity. Thereby, AGB losses by logging will be undetected or underestimated. In this
study it leads to a serious overestimation of the AGB by the indirect method. Figure 5
shows more examples of the observed AGB variability. In Fig. 5a the location of these
profiles within the study area is shown and superimposed on Landsat image acquired
in the year 2007. Green colors indicate lowland dipterocarp forest, while pink and red
colors indicate sparse vegetation. Fire scars from fires several years back in time ap-
pear in light green and recent fire scars from the year 2006 appear in red. AGB profile
2 in Fig. 5b transects two areas of previous logging activity. The LiDAR data set indi-
cates lower AGB values in logged areas which are not detectable in the Landsat image
and the land cover based estimate. AGB profile 3 (Fig. 5¢) transects a fire scar which
was created during the severe fire disaster in 1997. Here the Landsat based estimate
is higher than the LiDAR estimate. Forest regrowth was much slower than expected
and thus the AGB is overestimated. AGB profile 4 (Fig. 5d) covers peat swamp forest
and two fire scars from different years (2002 in the west and 2006 in the east) located
on a higher section of the elevated peat dome. The LiDAR AGB indicates significantly
lower AGB values for the peat swamp forest as in other areas in the study site or as
indicated by standard AGB values most likely caused by unfavorable growth conditions.
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Table 1 presents the results of the comparison between the LiDAR AGB estimates
for the LiDAR tracks and Table 2 the up-scaling of these estimates to the whole study
area compared to other methods and standard AGB values. The variation of the LIDAR
AGB estimates for different land cover classes (based on the Landsat classification) is
noticeable here as well (Tables 1 and 2). For areas classified as peat swamp forest
pristine, representing 36 % of all LiDAR track area and constituting approximately 65 %
of the total estimated AGB, this variation can be up to 140 % (Table 1). Furthermore,
the LIDAR AGB estimates for this class are 38 %, 96 %, and 120 % lower than using
values assigned to this class based on the site specific field inventory data, regional
literature estimates, and IPCC default values, respectively (Table 1). Similar relation-
ships were found in other land cover classes and therefore the direct LIDAR based AGB
estimate is in total 43 % (site specific field inventory data), 102 % (regional literature es-
timates), 137 % (IPCC default values) lower than the indirect method considering the
1 million ha study area (Table 2). This overestimation is higher than that shown by Asner
et al. (2010) who observed a 33 % lower regional LiDAR based carbon estimate than
by a default approach based on average IPCC (IPCC, 2006) carbon values assigned
to biomes in the Peruvian Amazon.

4 Discussion

Our results confirm that the use of airborne LiDAR data is the most reliable solution
for AGB and carbon stock estimates (Asner et al., 2009a, 2010; Lefsky et al., 2002,
2005; Means et al., 1999; Popescu, 2007; Zhao et al., 2009;). Despite its relatively
high operation costs for large scale mapping this approach produces the most accu-
rate estimates of forest carbon stocks in that it captures the natural spatial variability
and previous impacts like logging. Global estimates based on low and medium reso-
lution satellite data (Baccini et al., 2012; Saatchi et al., 2011) do not capture the local
variability in forest AGB (natural and human-caused) which is required for REDD+
project Measuring, Reporting, and Verification (MRV) systems. A “benchmark” map of
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biomass carbon stock for the tropics, based on a combination of in situ inventory plots,
satellite LiDAR data, and optical and microwave imagery (1 km resolution), showed that
especially for the peat forest areas of Central Kalimantan the uncertainty in biomass
carbon stock estimates was very high (> 45 %) (Saatchi et al., 2011). This high un-
certainty, the limited amount of in situ field measurements in South East Asean tropical
forests (especially in tropical peat swamp forests), and the inability of high and medium
multispectral resolution satellite instruments such as Landsat to quantify historic forest
disturbance show the importance to derive more accurate AGB estimates in these in-
accessible ecosystems. In combination with high resolution satellite imagery airborne
LiDAR could be a cost effective approach to derive more accurate regional maps on
forest carbon densities (Asner et al., 2010). Furthermore the new approach presented
here through using the CH and incorporating LiDAR point densities as weight has the
capability to improve current estimates on AGB spatial variability across different forest
types and degradation levels also in other tropical biomes and to assist the efforts in
up-scaling LiDAR derived AGB estimates to large-scale geographic areas.

There exists a considerable natural variability of AGB up to 140 % within the same
forest type due to varying environmental conditions. For example we found that in water
logged conditions the AGB is significantly lower than in drier locations. AGB reduction
by logging dating back more than 10yr can still be assessed by LiDAR but not by
multispectral satellite imagery available for that period in time.

The up-scaling of LIDAR AGB estimates to a large area of 1 millionha (59 % peat
swamp forest) showed an overestimation of 46 %, 102 %, and 137 % compared to the
indirect method based on a Landsat land cover map and site specific field inventory
data, regional literature values, and IPCC default values (Table 2). If the whole area
would be completely deforested (a likely scenario for the near future) this would lead
to an overestimation 63, 148, 198 Mega tons of CO, (34, 81, 108 Mega tons of AGB;
conversion factor from AGB to carbon 0.5 (IPCC, 2006).
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Especially for the carbon rich tropical peat swamp forests this finding is of high im-
portance because this ecosystem is disappearing with alarming rates due to the con-
version to oil palm plantations established to meet the demands for biofuels. By con-
verting peat swamp forests into bio fuel plantations more carbon will be released than
it is saved by using biofuels (Dewi et al., 2009).

For REDD+ activities default values or indirect approaches to determine AGB is not
sufficiently reliable and leads to inaccurate carbon stock estimates and consequently
to excessive carbon credits and compensation payments
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Table 1. Above Ground Biomass (AGB) comparison between the LiDAR based estimations
and AGB estimations where AGB values were based on site specific field inventory data (Field
plots), regional literature estimates (Literature), and IPCC default values (IPCC) and the at-
tributed to land cover classes, derived from a Landsat (multispectral satellite) classification, for
the peatlands within the LiDAR stripes of the 1 million ha study area (Mt = Megaton).

Class Averaged AGB (t/0.13 ha) Total AGB (Mt) Difference (%)
Name Area (ha) % LIDAR  Field Plots Literature IPCC LIDAR % FieldPlots % Literature % IPCC % LIDAR-  LIDAR- LiDAR-
Field Plots  Literature  IPCC
Peatswamp 972453 36  20.67 28.62 4056 4550 1.546 65 2,141 62 3.034 63 3404 61 38 96 120
forest pristine (£14.68)  (+9.48) (£24.57) (£0.709) (+1.838)
Peat swamp 7094.17 27 13.78 23.20 30.42 36.40 0.752 32 1.266 37 1.660 34 1986 35 68 121 164
forest logged (£1212)  (29.53)  (+24.57) (£0.520) (£1.341)
Bushland/ 2828.97 1" 1.86 1.64 3.90 9.10  0.040 2 0.036 1 0.085 2 0198 4 -12 110 390
Regrowth (£5.16) (+1.08) (£7.02) (+£0.023) (+£0.153)
Grassland/ 5543.88 21 0.33 0.43 1.56 0.81 0.014 1 0.019 1 0.067 1 0.034 1 31 370 143
Fern (£2.09) (£1.35) (£1.75) (+0.058) (+0.074)
Burned 1509.79 6 1.36 0.09 0.00 0.00 0.016 1 0.001 0 0.00 0 0.00 0 -93 -100 -100
(£3.50)  («1.09) (£0.013)
Total 26701.34 100 2369 100 3.462 100 4.845 100 5.622 100 46 105 137
(+2.596) (£6.736)
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Table 2. Above Ground Biomass (AGB) comparison between the LiDAR based estimations
and AGB estimations where AGB values were based on site specific field inventory data (Field
plots), regional literature estimates (Literature), and IPCC default values (IPCC) and the at-
tributed to land cover classes, derived from a Landsat (multispectral satellite) classification, for
the peatlands for the whole 1 million ha study area (Mt = Megaton).

Class Total AGB (Mt) Difference (%)
Name Area (ha) % LiDAR %  Field Plots % Literature % IPCC % LiDAR - LIDAR -  LiDAR -
Field Plots  Literature IPCC
Peatswamp  351588.32 39 55.912 71 77.408 68 109.696 69 123.056 66 38 96 120
forest pristine (+£39.702) (+25.639) (+66.450)
Peatswamp  186130.60 20 19.725 25 33.201 29 43.555 27 52117 28 68 121 164
forest logged (+£17.353) (+13.645) (+£35.179)
Bushland/ 154197.54 17 2.205 3 1.943 2 4.626 3 10.794 6 -12 110 390
Regrowth (+6.120) (+1.281) (+8.327)
Grassland/ 154108.55 17 0.394 0 0.515 0 1.849 1 0.955 1 31 370 143
Fern (+£2.478) (+1.600) (+£2.075)
Burned 65425.08 7 0.682 1 0.047 0 0.00 0 0.00 0 -93 -100 -100
(£1.761) (£0.549) (+0.00)
Total 911450.10 100 78.918 100 113.115 100 159.725 100 186.922 100 43 102 137
(£127.752) (+£83.841) (+£220.134)
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Fig. 1. Location of the LiDAR tracks and Above Ground Biomass (AGB) clusters (see methods)
(0.13 ha, indicated by black +) in Central Kalimantan, Indonesia, superimposed on a Landsat
image (ETM+ 118-61, 2009-05-22 and ETM+ 118-62, 5 August 2007; bands 5-4-3 and both
scenes were gap filled). The red rectangles show the location of A, B, and C. In B and C also
the LiDAR derived Digital Surface Models (DSM) are shown.
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Tall peat swamp forest

Low pble peat swamp forest
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Fig. 2. Sample data set for each of the four investigated forest types. (A1) to (A3) show tall peat swamp forest
(AGB =57.61 t0.13ha'1, LiDAR point density =1.5 ptm'2, Centroid Height (CH) = 18.7 m, Quadratic Mean Canopy
profile Height (QMCH) = 24.0 m). Note that CH and QMCH are in the upper canopy of the forest. (B1) to (B2) show low
pole peat swamp forest (AGB = 19.12 t0.13ha”", LIDAR point density = 1.1 ptm‘2, CH=13.7m, QMCH = 18.9m). (B3)
shows the forest structure (a small peak at about 24 m representing emergent trees and a large peak at about 14 m
representing the main canopy layer). (C1) to (C3) show logged tall peat swamp forest (AGB = 5.05t0.13 ha™’ , point den-
sity=2.9 ptm_z, CH=5.8m, QMCH =6.2m). The small peak in (C2) at about 26 m height indicates remaining tall trees.
(C3) clearly shows the predominant ground return. CH and QMCH are located in similar heights. (D1) to (D3) show
lowland dipterocarp forest (AGB = 108.20t0.1 3ha”', LIDAR point density =2.3 ptm"z, CH=25.3m, QMCH =35.3m).
The two peaks in (D3) (at about 14 m and 34 m) indicate a complex multi-layered forest structure.

11839

| Jadeq uoissnosigq | Jeded uoissnosiq | Jaded uoissnosiqg

Jaded uoissnasiq

BGD
9, 11815-11842, 2012

Detection of AGB
variability with LiDAR

J. Jubanski et al.

(8
S

]
2


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/9/11815/2012/bgd-9-11815-2012-print.pdf
http://www.biogeosciences-discuss.net/9/11815/2012/bgd-9-11815-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

A 140

AGB (Y0.13ha)

120

100

80

60

——— With Densities

Classic

Field Plots

R2=0.79

R?=0.88
n=52

10 15 20 25
CH - Centroid Height (m)

30

AGB (t/0.13ha)

Field Plots

Classic
R?=0.76

—— With Densities
R?=0.84
n=52

0
0 5 10 15 20 25 30 35 40 45

QMCH - Quadratic Mean Canopy Profile Height (m)

(2]

AGB Standard Deviation (ton/0.13ha)

Parameter
QMCH
CH ——

05 1 15 2 25 3 35 4 45 5
Point Density (pt/m?)

11840

Fig. 3. Biomass regression and rigorous covariance propagation analysis results. (A) In
red the Centroid Height (CH) based regression model with LIiDAR point density weighting
(AGB = 0.0865 x CH*'®*: % =0.88; Root Mean Square Error (RMSE) = +13.79t 0.13ha™";
Predictive Power of the Regression (PPR) = +14.98t 0.13ha"') and in blue without weighting
(AGB = 0.0484 x CH?**%*: B2 =0.79; RMSE = +16.06t 0.13ha™'; PPR=+17.43t 0.13ha™").
(B) In red the Quadratic Mean Canopy profile Height (QMCH) based regression model with
LiDAR point density weighting (AGB =0.1150 x QVCH#%%¢: 2 =0.84) and in blue without
weighting (AGB = 0.0660 x QUCH?%"”: R? = 0.76). The circle size in (A) and (B) represents
the point densities (the smallest about 0.2 ptm’2 and the biggest about 3.5 ptm'z). (C) Stan-
dard deviation behaviour estimation curves for CH and QMCH based regression models (de-
rived from the covariance propagation analysis).
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Fig. 4. AGB results shown for a LiDAR track covering 10 km in the Sebangau peat swamp forest catchment. Location
of this LiDAR track is shown in Fig. 4 (AGB profile 1). (A) Extent of the LiDAR track and the location of the AGB
profile of (D) superimposed on a Landsat scene from the year 2000 (ETM+ 118-62, 16 July 2000, bands 5-4-3). Green
represents forest cover and logging activities are visible as pink dots near to straight line features (logging railways).
(B) Extent of the LiDAR track and the location of the AGB profile of (D) superimposed on a Landsat scene from the year
2007 (ETM+ 118-62, 5 August 2007; bands 5-4-3; gap filled). The logging activities are not visible anymore. (C) LiDAR
AGB regression results superimposed on the Landsat classification (green = peat swamp forest pristine, brown = peat
swamp forest logged). (D) AGB variability measured by LiDAR (black) and the corresponding AGB estimates attributed
to the land cover types of the Landsat classification. Site specific inventory data (Field plots) = orange, regional literature
estimates (Regional database) = yellow, and IPCC default values (IPCC) = red. Black arrows indicate the extent of the
logging activities seen in (A).
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Fig. 5. Examples of different AGB profiles where LIDAR based AGB estimates are compared to the AGB values
attributed to the land cover classes from the Landsat classification on peatlands within the LiDAR stripes. Three dif-
ferent sources for AGB values were attributed to the land cover classes: site specific field inventory data (Field plots,
orange), regional literature estimates (Regional database, yellow), and IPCC default values (IPCC, red). AGB profile 1
is described in more detail in Fig. 3. (A) Location of the AGB profiles within the study area superimposed on Landsat
imagery from the year 2007. (B) AGB profile 2 (9.5 km long) covers two areas of former logging activities (0.0-2.2km
and 5.9-9.0 km) within a peat swamp forest. Here the AGB variability within the forest and the lower AGB values in the
logging areas is visible in the LiDAR estimates but not in the Landsat based estimates. (C) AGB profile 3 (15.2 km long)
within a peat swamp forest covering a fire scar from the year 1997 (1.8-10.4 km). The Landsat based AGB estimates
are much higher than the LiDAR estimates. Also the LIDAR AGB estimates give an idea on the AGB variability which
the Landsat based estimates are not able to give. (D) AGB profile 4 (10 km long) within a peat swamp forest covering
one fire scars from the year 2002 (2.9—4.1 km) and another fire scar from the year 2006 (7.5-10.0 km). Here also the
Landsat based AGB estimates for peat swamp forest are much higher than the LiDAR estimates.

11842

| Jadeq uoissnosigq | Jeded uoissnosiq | Jaded uoissnosiqg

Jaded uoissnasiq

BGD
9, 11815-11842, 2012

Detection of AGB
variability with LiDAR

J. Jubanski et al.

(8
S

]
2


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/9/11815/2012/bgd-9-11815-2012-print.pdf
http://www.biogeosciences-discuss.net/9/11815/2012/bgd-9-11815-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

